<label id="8wooq"></label>
<strong id="8wooq"></strong>
  • <tt id="8wooq"></tt>
  • <tt id="8wooq"><input id="8wooq"></input></tt>
  • 1月8日 范更華 教授學術報告(數學與統計學院)

    來源:數學科研研究生作者:時間:2021-01-05瀏覽:10設置

    報 告 人:范更華 教授

    報告題目Circuit Covers in Signed Graphs

    報告時間:2021年1月8日下午3:30

    報告地點:9#1508

    主辦單位:數學與統計學院、科學技術研究院

    報告人簡介

    范更華,福州大學教授、博士生導師、曾任福州大學副校長以及全國組合數學與圖論學會理事長,現任離散數學及其應用教育部重點實驗室主任,1998年獲國家杰出青年科學基金,2003年獲教育部科技一等獎,2005年獲國家自然科學二等獎獲。主持多項國家自然科學基金重點項目與國家973計劃課題。主要從事圖論領域中的結構圖論、極圖理論、帶權圖、歐拉圖、整數流理論、子圖覆蓋等方向的基礎理論研究。他的成果以“范定理”、“范條件”被國內外同行廣泛引用。一些成果還作為定理出現在國外出版的教科書中。擔任國際圖論界權威刊物《Journal of  Graph Theory》執行編委。

    報告摘要

    A signed graph is a graph G associated with a mapping . A signed circuit in a signed graph is a subgraph whose edges form a minimal dependent set in the signed graphic matroid. A signed graph is coverable if each edge is contained in some signed circuit. An oriented signed graph (bidirected graph) has a

    nowhere-zero integer °ow if and only if it is coverable. A circuit-cover (circuit k-cover) of a signed graph G is a collection of signed circuits which covers each edge of G at least once (precisely k-times). It is obtained that every signed eulerian graph G has a circuit 6-cover, consisting of 4 circuit-covers of G, and as an immediate consequence, G has a circuit-cover with total number of edges at most . It is known that for every integer , there are infinitely many coverable signed graphs that have no circuit k-cover. Is it true that every coverable signed graph has a circuit 6-cover? This is still an open problem.


    返回原圖
    /

    亚洲国产欧美日韩在线一区_A亚洲影视在线观看_免费很黄很色裸乳直播_欧美—本道免费无码_日本特黄特色A毛片